The impact of keV sterile neutrinos on core-collapse supernovae

Anna M. Suliga

with I. Tamborra and M.-R. Wu JCAP **1912** (2019) 019 arXiv: 2004.11389

July 27, 2020

Niels Bohr Institute, University of Copenhagen

Brookhaven Neutrino Theory Virtual Seminar

1 Core-collapse supernovae

- 2 Sterile neutrinos with keV masses
- **3** Sterile neutrino conversions in the stellar core
- **4** The sterile-tau neutrino mixing
- **5** The sterile-electron neutrino mixing

6 Conclusions

Core-collapse supernovae

Why are neutrinos important for a core-collapse supernova?

Different phases of a core-collapse supernova explosion

- Neutronization phase, Accretion phase, ν_e burst ~ 40 ms
 - $\sim 100 \,\mathrm{ms}$

 Cooling phase, $\sim 10 \mathrm{s}$

H. T. Janka, arXiv:1702.08713

Neutrino flavors

active neutrinos

The Particle Zoo 3/19

Neutrino flavors

active neutrinos

+ sterile neutrino

The Particle Zoo 3/19

tau-neutrino

Sterile neutrinos with keV masses

Sterile neutrino as dark matter candidate

Favorable regions

- Pulsar kicks
 (A. Kusenko (2004))
- 3.5 keV line

 (A. Boyarsky et al. (2014),
 E. Bulbul et al. (2014))

Constraints

- Supernovae energy bounds (X. Shi & G.Sigl (1994))
- DM overproduction (S. Dodelson, L. M. Widrow (1994), X. Shi, G. M. Fuller (1999))
- Radiative decay (NuSTAR, XMM, Chandra)
- Tremaine-Gunn bound

Sterile Neutrino Dark Matter, A. Merle (2017) 4/19

The role of sterile neutrinos in supernovae

- Suppression / enhancement of the SN explosion
- Change of the electron or neutrino $(\nu_e, \nu_\mu, \nu_\tau)$ fractions

H. Nunokawa et al. (1997), M. L. Warren et al. (2016), C. A. Argüelles et al. (2016) ...

Sterile neutrino conversions in the stellar core

Sterile neutrino conversions in the stellar core

$\nu_e - \nu_s$ mixing: multiple resonances

$$2 \overset{\sim}{\theta} \Gamma_{\nu_{\text{active}}} \qquad V_{\text{eff}} = \sqrt{2} G_F n_B \left[\frac{3}{2} Y_e + 2Y_{\nu_e} + Y_{\nu_{\mu}} + Y_{\nu_{\tau}} - \frac{1}{2} \right]$$

L. Stodolsky (1987), H. Nunokawa et al. (1997), K. Abazajian et al. (2001)

 $\Gamma_{\nu_{\alpha}} = \sin^2 i$

6/19

Collisional production

$$\langle P_{\nu_{\text{active}} \to \nu_s}(E) \rangle \approx \frac{1}{2} \frac{\sin^2 2\theta}{(\cos 2\theta - 2V_{\text{eff}}E/m_s^2)^2 + \sin 2\theta^2 + D^2}$$

MSW production

$$P_{\nu_{\text{active}} \to \nu_{\text{s}}}(E_{\text{res}}) = 1 - \exp\left(-\frac{\pi^2}{2}\gamma\right), \gamma = \Delta_{\text{res}}/l_{\text{osc}}$$

$$\Gamma_{\nu}(E) \simeq n(r)\sigma(E,r)$$

$$D = \frac{E\Gamma_{\nu_{\text{active}}}(E)}{m_s^2}$$
$$\Delta_{\text{res}} = \tan 2\theta \left| \frac{dV_{\text{eff}}/dr}{V_{\text{eff}}} \right|^{-1}$$

$$l_{\rm osc}(E_{\rm res}) = (2\pi E_{\rm res})/(\Delta m_s^2 \sin 2\theta)$$

C. W. Kim et al. (1987), S. J. Parke (1987), S. P. Mikheev and A. Yu. Smirnov (2007) 7/19

Sterile neutrino conversions in the stellar core

- Negative $V_{\text{eff}} \rightarrow MSW$ resonances only for antineutrinos.
- Growing chemical potential slows down $\bar{\nu}_s$ production.

The sterile-tau neutrino mixing

Development of the neutrino lepton asymmetry

Active + sterile neutrinos

$$Y_{\nu_{\tau}}(r,t) = \frac{1}{n_b(r)} \int_0^t dt' \; \frac{d \left(P_{\nu_{\tau} \to \nu_s} n_{\nu_{\tau}}(r,t') - P_{\bar{\nu}_{\tau} \to \bar{\nu}_s} n_{\bar{\nu}_{\tau}}(r,t') \right)}{dt'}$$

Radial evolution of the asymmetry w and w/o feedback

- Feedback inhibits $Y_{\nu_{\tau}}$ from unphysical growth.
- The ν_{τ} chemical potential grows significantly.

The supernova bounds on the mixing parameters

- The inclusion of feedback greatly reduces the excluded region.
- Large region of the parameter space still compatible with SNe

The sterile-electron neutrino mixing

Equations describing the dynamical feedback

 $e^+ + p \leftrightarrow \nu_e + n$ and $e^- + n \leftrightarrow \bar{\nu}_e + p$.

β equilibrium

$$\mu_{e}(r,t) + \mu_{p}(r,t) + m_{p} = \mu_{\nu_{e}}(r,t) + \mu_{n}(r,t) + m_{n},$$

Lepton number conservation

$$Y_{\rm e}(r,t) + Y_{\nu_e}(r,t) + Y_{\nu_s}(r,t) = {\rm const.} ,$$

Charge conservation

$$Y_{\rm p}(r,t)+Y_{\rm n}(r,t)=1\,,$$

Baryon number conservation

$$Y_{\rm p}(r,t) = Y_e(r,t) \; ,$$

Entropy change

$$dS = Q/T + P/TdV - \sum_{i} \mu_i/TdY_i \,.$$

Radial evolution of the asymmetry

- Sterile particles modify the Y_e , Y_{ν_e} , Y_p and Y_n .
- The sign of the generated change depends greatly on the *m*_s.

Radial evolution of the temperature and entropy per baryon

- The $\nu_s \nu_e$ mixing induces large variations on
 - the entropy per baryon,
 - the supernova medium temperature.

Contour plot: electron fraction

- The change in Y_e can be negative or positive.
- Might considerably affect the evolution of the proto-neutron star.

The supernova bounds on the mixing parameters

- The inclusion of feedback greatly reduces the excluded region.
- Large region of the parameter space still compatible with SNe.

The supernova bounds on the mixing parameters

• The inclusion of feedback greatly reduces the excluded region.

• SNe cannot exclude any region of the DM parameter space. K. C. Y. Ng et al. (2019), K. C. Y. Ng et al. (2015), S. Horiuchi et al. (2013), K. N. Abazajian et al. (2006), A. Boyarsky et al. (2005), ...

The region of a possible supernova explosion enhancement

- Heating of the outer layers \rightarrow emission of high energy $\nu_e, \bar{\nu}_e$
- Increased energy deposition in the stalled shock \rightarrow easier explosion

Conclusions

• Sterile neutrinos with keV mass

- have a major impact on the SN physics.
- lead to the growth of $Y_{\nu_{\tau}}$ asymmetry.
- force the change of Y_e and Y_{ν_e} .
- might aid the explosion mechanism.
- Feedback is crucial.

• New treatment of active-sterile neutrino mixing in SNe challenges sterile neutrino bounds.

• Sterile neutrinos with keV mass

- have a major impact on the SN physics.
- lead to the growth of $Y_{\nu_{\tau}}$ asymmetry.
- force the change of Y_e and Y_{ν_e} .
- might aid the explosion mechanism.
- Feedback is crucial.

• New treatment of active-sterile neutrino mixing in SNe challenges sterile neutrino bounds.

Thank you!