Astrophysical constraints on the non-standard coherent neutrino-nucleus scattering

Anna M. Suliga

with I. Tamborra Phys.Rev.D 103 (2021) 8

May 5, 2021

Niels Bohr Institute, University of Copenhagen

EuCAPT

Main ingridients for calculating the sensitivities

Astrophysical neutrino fluxes

- Galactic supernova neutrinos
- Solar neutrinos
- Atmospheric neutrinos

 $\nu + T(A, Z) \rightarrow \nu + T(A, Z)$

Reaction

 Coherent Elastic Neutrino-Nucleus Scattering (CEνNS) (D. Z. Freedman, (1973), COHERENT Collaboration)

New physics

 non-standard scalar and vector mediators coupling to neutrinos and quarks
(R. Harnik, D. G. Cerdeno et al. (2016), Y. Farzan et al.(2018) ,...)

Future generation CE_VNS detectors

fiducial volume: 2.4 - 456 tor target material: Pb threshold: 1 keV

Scattering rate

 $E_r^{\max} = \frac{2E_{\nu}^2}{m_{\tau} + 2E_{\tau}}$

fiducial volume: 40 ton target material: Xe threshold: 1 keV efficiency: XENON1T - 100%

$$\frac{dR_{\nu N}}{dE_r dt} = N_T \ \epsilon(E_r) \int dE_{\nu} \ \frac{d\sigma_{\nu N}}{dE_r} \ \psi(E_{\nu}, t) \ \Theta(E_r^{\max} - E_r)$$

Event rates for supernova neutrinos

- Failed SN: hotter neutrino spectrum \rightarrow longer recoil spectrum
- Heavier target: higher number of events but shorter recoil spectrum

Sensitivity bounds on the new non-standard mediators

- Detection of solar and supernova neutrinos \rightarrow most competitive bounds
- WIMP bound can be translated to a limit on non-standard mediators
- Static picture: non-standard mediators inside the SN place weak bounds

Future dark matter (CE ν NS) detectors

- sensitive to astrophysical neutrinos
- flavor insensitive neutrino channel
- high cross section & low thresholds
- open an extra window to probe new physics
- promise to place most competitive bounds on new mediators

Core-collapse supernovae

- non-standard mediators affect the diffusion time of neutrinos
- scalar LNC mediator \rightarrow new cooling channel

Thank you!

Backup slides

Astrophysical neutrino fluxes

Supernova neutrinos

- large flux for Galactic SN
- transient event

Solar neutrinos

- ${}^{8}B \rightarrow {}^{8}Be^{*} + e^{+} + \nu_{e}$ ${}^{3}He + p \rightarrow {}^{4}He + e^{+} + \nu_{e}$
- \bullet neutrino energies up to ${\sim}15~MeV$

Atmospheric neutrinos

$$\pi^+ \to \mu^+ + \nu_\mu$$
 and $\pi^- \to \mu^- + \bar{\nu}_\mu$
 $\mu^+ \to e^+ + \bar{\nu}_\mu + \nu_e$ and $\mu^- \to e^- + \nu_\mu + \bar{\nu}_e$

- the highest neutrino energies among the considered sources
- \bullet high uncertainty $\sim 20\%$
- E. Vitagliano et al. (2019), M. Honda et al. (2011), J. L. Newstead et al. (2020)

Coherent elastic neutrino-nucleus scatterings (CE*v*NS)

$$\frac{d\sigma_{\rm SM}}{dE_r} = \frac{G_F^2 m_T}{4\pi} Q_w^2 \left(1 - \frac{m_T E_r}{2E_\nu^2} \right) F^2(Q), \ Q_w = \left[N - Z(1 - 4\sin^2\theta_W) \right]$$

- coherently enhanced by the square of the neutron number
- flavor insensitive
- coherent up to $\sim 50 \text{ MeV}$

D. Z. Freedman

Non-standard coherent neutrino-nucleus scatterings

D. G. Cerdeno et al. (2016), Y. Farzan et al. (2018), D. Aristizabal Sierra et al. (2019)

Results supernova neutrinos

- failed SN: higher number of events → better constraints
- RES-NOVA-3 drives the limits due to to higher volume
- vector mediator small unconstrained region due to the interference term
- limits on the vector mediator better for low mediator masses

Results solar and atmospheric neutrinos

- Solar neutrinos: bounds driven by Xe based detector
- Atmospheric neutrinos: bounds driven by Pb detector
- Scalar mediator
 - Bounds driven by Pb detector

XENON1T results

M. Schumann (2019)

neutrino floor unavoidable background in the future dark matter detectors

J. Aalbers et al. wimprates, E. Aprile et al. (2019)

Comparision of limits from specific new physics models

Comparision of limits from specific new physics models

Non-standard coherent scattering in the supernova core

- prolonged diffusion time \rightarrow possible change in the star's fate
- prolonged diffusion time \rightarrow changed duration of the neutrino signal
- LNC scalar mediator \rightarrow new cooling channel due to ν_R

Non-standard coherent scattering in the supernova core

• mean-free path $\lambda_{\nu_{\beta}} = \sum_{\text{CC.NC}} \frac{\int dE_{\nu_{\beta}} f(E_{\nu_{\beta}}) E_{\nu_{\beta}}^2}{n_t \int dE_{\nu_{\beta}} f(E_{\nu_{\beta}}) E_{\nu_{\beta}}^2 \sigma_i(E_{\nu_{\beta}})} \qquad \text{• diffusion time} \\ \tau_{\nu_{\beta}} = \int_{R_1}^{R_2} dr \frac{r}{\lambda_{\nu_{\beta}}(r)}$

 number of scatters $N = \int_0^{R_2} \frac{2r}{\lambda(r)^2} dr$

 $R_1 = 10 \text{ km}$ $R_2 = 40 \text{ km}$